Wir reden hier nicht um den Brei, Wikipedia gibt hier grundsätzliches an Informationen, wir bieten hier nur einige Auszüge daraus zur Kenntnis.

 

LED-EntwicklunG

Geschichte

Nachbildung des Experiments H. J. Rounds. Eine negativ geladene Nadelspitze auf Siliziumkarbid erzeugt einen grün glimmenden Leuchtdiodenübergang

Entwicklung des maximalen Lichtstroms kommerziell erhältlicher LEDs. Die Skala ist logarithmisch und die Gerade entspricht daher einem exponentiellen Anstieg.

Am Anfang der Entwicklung der Halbleiter stand eine wissenschaftliche Entdeckung, die lange ignoriert wurde. 1876 hielt Ferdinand Braun einen Vortrag über Stromleitung durch Kristalle. Er schildert seine Versuche, bei denen er eine Metallspitze auf einen Sulfidkristall (u. a. Bleisulfid) presste und herausfand, dass der Kristall in einer Richtung gut leitet und zwar umso besser, je höher der Strom ist – in die andere Richtung fließt hingegen nur wenig Strom. Da man damals nur ohmsche Leiter und Isolatoren kannte, passte dieser Gleichricht(er)effekt nicht in die damals bekannten Eigenschaften der Materie und es dauerte fast 60 Jahre, bis eine Erklärung dieser besonderen Merkmale gefunden werden konnte.[9] Henry Joseph Round (1881–1966) beobachtete 1907 erstmals, dass anorganische Stoffe unter dem Einfluss einer angelegten Spannung zu einer Lichtemission fähig sind.[10] 1921 entdeckte der russische Physiker Oleg Lossew den Round-Effekt erneut und untersuchte ihn 1927 bis 1942 genauer, da er vermutete, dass das Phänomen als Umkehrung des Einsteinschen, photoelektrischen Effektes zu deuten ist. Georges Destriau entdeckte 1935 an Zinksulfid ein ähnliches Leuchtphänomen und bezeichnete es nach dem russischen Physiker als Lossew-Licht.

In der Folgezeit konnte ab 1951 durch die Entwicklung des Transistors ein wissenschaftlicher Fortschritt in der Halbleiterphysik erreicht werden. Weiter war es möglich, den Prozess der Lichtemission aufzuklären. Zunächst wurde allerdings weiter mit Zinksulfid experimentiert. Erfolgreicher waren jedoch die Forschungen an den als Halbleiter erkannten III-V-Verbindungshalbleitern. Ab 1957 konzentrierte man sich bei der Erforschung der Lichterzeugung ganz auf Halbleiter. Besonders die Lichtemission im sichtbaren Bereich auf der Basis von Galliumarsenid (GaAs) und Galliumphosphid (GaP) war von Bedeutung.

Absatz 2

Einige Quellen schreiben die Erfindung der Leuchtdiode Nick Holonyak zu und datieren sie auf 1962.[11]

Im Laufe der Entwicklung seit den ersten LEDs 1962 wurde die Lichtausbeute um mehr als drei Größenordnungen von unter 0,1 Lumen/Watt auf über 100 Lumen/Watt gesteigert. Diese überwiegend in großen Sprüngen gemachten Entwicklungsschritte beruhen außer auf der immer besseren Qualität der Halbleiterschichten (geringere Defektdichten, weniger Verunreinigungen) auf dem Einsatz von Halbleiterheterostrukturen, niederdimensionalen Strukturen (Quantenpunkte), transparenten Substraten und der verbesserten Lichtauskopplung. Ausgehend von GaAs/AlAs (1960er Jahre, rot-gelb) wurden neue Halbleitermaterialien wie GaP (1970er Jahre, grüne LEDs) und GaN (1980er/1990er Jahre, grün bis UV) entwickelt, so dass es heute LEDs in nahezu allen Farben des Spektrums gibt (bis auf eine Lücke im Grün-gelb-Bereich). Insbesondere nach Halbleitern, die Licht im kurzwelligen Bereich (blau, UV) effizient erzeugen, wurde lange gesucht. Hauptproblem war lange Zeit das Dotieren eines p-leitenden Bereichs geeigneter breitlückiger Halbleiter, das erstmals 1988 bei GaN der Gruppe Akasakis in Japan gelang, dann 1992 auch Shuji Nakamura mit einem anderen Ansatz. Dieser führte zur ersten kommerziellen blauen LED auf GaN-Basis, die, inzwischen erweitert um weiße und grüne LEDs sowie blaue Laserdioden, seit 1993 von Nichia vertrieben werden. Bis dahin basierten blaue LEDs auf dem Material Siliziumkarbid, das als indirekter Halbleiter für effiziente Lichtemission schlecht geeignet ist.

2006 erreichte eine LED von Nichia in Labortests 150 lm/W (fast 22 % Wirkungsgrad). Das entspricht der Effizienz von Natriumdampflampen, welche in verschiedenen Arten seit den 1970er Jahren verfügbar sind. 2007 gelang es dem Unternehmen Cree im Labor, eine kaltweiße LED mit über 1000 lm bei einer Effizienz von 72 lm/W zu betreiben, die warmweiße Variante kam bei 760 lm immerhin noch auf 52 lm/W Lichtausbeute. Seit 2009 ist eine LED von Nichia auf dem Markt mit einer angegebenen Lichtausbeute von 160 lm/W, allerdings nur geringer Gesamtleistung. Cree lieferte 2010 erste LEDs aus, die bei 1 W 160 lm/W erreichen und bei 10 W immer noch ca. 100 lm/W.

Absatz 3

Im September 2009 begann Cree mit der Auslieferung einer weißen LED mit einer Lichtausbeute (Herstellerangaben) von 132 lm/W, die bei der maximalen Leistungsaufnahme von fast 10 W auf 105 lm/W abfällt, wobei für diesen Produktionstyp Lichtstromwerte bei 350 mA in den Leistungsklassen 114 lm; 122 lm; 130 lm und 139 lm (=132 lm/W) angeboten werden.[Firma 10] Das Unternehmen berichtete im Februar 2010[Firma 11] über eine Labor-Prototyp-LED, die 208 Lumen pro Watt bei Raumtemperatur erreichte, bei einer Farbtemperatur von 4579 K. Im Oktober 2011 konnte Osram Prototypen einer roten LED vorstellen, die bei 609 nm und Nennstrom von 350 mA eine Lichtausbeute von 168 lm/W erreicht.[Firma 12]

Ende Dezember 2012 stellt Cree eine LED mit 200 lm/W vor. [Firma 13]

Im März 2013 stellte Cree eine LED-Lampe (LED-Glühbirne) mit 84 lm/W für die E27-Fassung vor. Bei 800 Lumen und 9,5 Watt soll sie die Leistung einer Standard-60-W-Glühfadenlampe erreichen. Sie ist dimmbar und in der 40-W-Version soll der Preis die Zehn-Dollar-Marke unterschreiten.[Firma 14]

Beim Vergleich der Lichtstärke unterschiedlicher LEDs ist der Abstrahlwinkel in die Berechnung einzubeziehen.[Firma 15] Häufige Abstrahlwinkel liegen zwischen 24 und 40 Grad.

Die Steigerung der Effizienz und die preiswertere Herstellung der Halbleiter sind die Ziele weiterer Entwicklungen. Gegenwärtig wird besonders daran gearbeitet, sowohl transparente Träger- und Halbleiter-Materialien als auch transparente elektrische Zuleitungen herzustellen, da die Bonddrähte (elektrische Leitungen zum Halbleiterchip) einen Teil der leuchtenden Fläche abdecken.

 

Aufbau

Innerer Reflektor einer Leuchtdiode

Leuchtdiode in SMD-Bauweise

Verschiedene Leuchtdioden

Der Halbleiterkristall vieler Leuchtdioden ist auf den Boden einer kegelförmigen Vertiefung in einem Metallhalter gelötet. Die Innenseiten der Vertiefung wirken als Reflektor für das aus den Seiten des Kristalls austretende Licht. Die Lötstelle bildet einen der beiden elektrischen Anschlüsse des Kristalls. Gleichzeitig nimmt sie die Abwärme auf, die entsteht, weil der Halbleiterkristall nur einen Teil der elektrischen Leistung in Licht umsetzt. Der Halter mit dem Reflektor ist bei bedrahteten Leuchtdioden als Draht mit rechteckigem Querschnitt ausgeführt, der als elektrischer Anschluss dient. Anders als sonst bei Elektronikbauteilen üblich besteht der Anschlussdraht nicht aus verzinntem Kupfer, sondern aus verzinntem Stahl. Die Wärmeleitfähigkeit von Stahl ist vergleichsweise gering. Dadurch wird der Halbleiterkristall beim Einlöten des Bauteils in eine Leiterplatte nicht durch Überhitzung zerstört.

Die Oberseite des Kristalls ist nur durch einen dünnen Bonddraht elektrisch mit dem zweiten Stahlanschlussdraht verbunden, damit der Anschluss nur sehr wenig der lichtemittierenden Oberfläche verdeckt.

Die Kathode (−) ist durch eine Abflachung am Bund des Gehäusesockels markiert. Bei fabrikneuen Leuchtdioden ist zudem der Anschluss der Kathode kürzer (Merkregel: Kathode = kurz = Kante). Bei den meisten Leuchtdioden ist der Reflektor die Kathode, dann gilt auch die Merkregel, dass die technische Stromrichtung von dem Pfeil, den die Anode (+) durch ihre Form bildet, „angezeigt“ wird. In seltenen Fällen ist der Aufbau umgekehrt.

Hochleistungs-Leuchtdioden (H-LED) werden mit höheren Strömen als 20 Milliampere betrieben. Es entstehen besondere Anforderungen an die Wärmeableitung, die sich in speziellen Bauformen ausdrücken. Die Wärme kann über die Stromzuleitungen, die Reflektorwanne oder in den Leuchtdiodenkörper eingearbeitete Wärmeleiter abgeführt werden.

Eine weitere Möglichkeit ist das direkte Drahtbonden des Leuchtdioden-Chips auf der Platine (chip on board) und der spätere Verguss mit Silikonmassen. Diese Bauform findet bei LED-Displays mit sehr vielen Leuchtdioden Verwendung. Im Fachhandel werden diese Leuchtmittel „COB-LED“ genannt.

Mehrfarbige Leuchtdioden bestehen aus mehreren (zwei oder drei) Dioden in einem Gehäuse. Meist haben sie eine gemeinsame Anode oder Kathode und einen Anschluss für jede Farbe. Bei einer Ausführung mit zwei Anschlüssen sind zwei Leuchtdioden-Chips antiparallel geschaltet. Je nach Polarität leuchtet die eine oder andere Diode. Eine quasi stufenlose Farbveränderung kann man über ein variables Pulsbreitenverhältnis eines geeigneten Wechselstroms realisieren.

Alterung

Lebensdauer in Einschaltstunden

Als Lebensdauer (Licht-Degradation) einer LED wird die Zeit bezeichnet, nach der die Lichtausbeute im Mittel auf 70 % des Anfangswertes abgesunken ist (L70B50-Wert)[Firma 2][Firma 3]; einige Internet-Quellen sprechen auch vom Ende der Lebensdauer bei 50 % der anfänglichen Helligkeit.

Leuchtdioden werden nach und nach schwächer, fallen aber in der Regel nicht plötzlich aus. Die Alterung ist annähernd linear. Die Lebensdauer hängt vom jeweiligen Halbleitermaterial, den Betriebsbedingungen (Wärme, Strom) und der individuell tolerierbaren Farbtemperaturveränderung der Fluoreszenzfarbstoffe ab (weiße LEDs werden blaustichiger). Hohe Temperaturen (gewöhnlich durch hohe Ströme) verkürzen die Lebensdauer der LEDs drastisch. Die angegebene Lebensdauer reicht von einigen hundert Stunden bei älteren 5-Watt-LEDs[Firma 4] bis zu über 100.000 Stunden (11,4 Jahre) bei mit niedrigen Strömen betriebenen LEDs. Aktuelle Hochleistungs-LEDs werden, um eine maximale Lichtausbeute zu erreichen, oft an Arbeitspunkten betrieben, bei denen ihre Lebensdauer bei 15.000 bis 30.000 Stunden liegt. Gute Hersteller von LED-Leuchten erreichen jedoch durch eine optimale Auslegung ihrer Systeme deutlich bessere Werte und garantieren bis zu 100.000 Stunden wartungsfreien Betrieb. Das wird erreicht durch eine kostenaufwendige Selektion der Bauteile aller Komponenten (sowohl der LEDs als auch der Bauelemente des Treibers). Auch im Handel erhältliche LED-Leuchtmittel in Glühlampenform werden mit über 25.000 Stunden bis hin zu 45.000 Stunden Lebenszeit angegeben. Durch zu hohe thermische Belastungen, die durch die Bauform bedingt sind, erreichen sie diese Lebensdauer meist nur mit erheblichen Helligkeitsminderungen. Alternativen sind konsequent als LED-Leuchte entwickelte Komplettsysteme.[Firma 5][4][Firma 6][Firma 7]

Die Alterung von LEDs ist in erster Linie auf die Vergrößerung der Fehlstellen im Kristall durch thermische Einflüsse zurückzuführen. Diese Bereiche nehmen nicht mehr an der Lichterzeugung teil. Es entstehen strahlungslose Übergänge. Bei GaN-LEDs im blauen und Ultraviolett-Bereich ist auch eine Alterung der Kunststoffgehäuse durch das kurzwellige Licht mit einhergehender Trübung feststellbar. Bei diesen und weißen LEDs mit hoher Leistung wird deshalb der lichtdurchlässige Teil des Gehäuses manchmal aus Silikongummi gefertigt, wodurch eine Lebensdauer von 100.000 Stunden erzielt wird. Die Lösung ist eine thermisch optimierte Bauweise, welche oft nicht beachtet wird. Das führt zu Totalausfällen.

Diese Fehlfunktionen werden unter dem englischsprachigen Begriff Mortality (B) oder Totalausfall beschrieben. Steht im Datenblatt einer LED z. B. B50 bei 100.000 Std., bedeutet das, dass 50 % aller Testlampen nach 100.000 Std. durch Defekt ausgefallen sind. Manchmal wird auch der B10-Wert angegeben, d. h. die Zeitdauer, nach der 10 % der Testlampen nicht mehr funktionieren.

Die häufigsten Ursachen für Totalausfälle von LED-Leuchten sind jedoch im verwendeten Netzteil zu finden. Hier sind die verwendeten Kondensatoren zur Glättung der geregelten Kleinspannung das Problem, da diese thermisch empfindlich sind und mit zunehmender Temperatur exponentiell schneller altern. Oft sind sie auch aus Preisgründen von minderer Qualität. Das führt zum Ausfall der Stromversorgung, der nicht der LED angelastet werden kann.

Eine weitere Ursache kann eine Fehlfunktion auf Grund der Alterungsvorgänge in den verwendeten Materialien sein, zum Beispiel Ermüdungserscheinungen der Klebe- oder Bodenverbindungen.

 

Viele Schaltzyklen trotz spontan vollen Lichtstroms

Bei den meisten Marken-Leuchtmitteln wird heute die Lebensdauer in Stunden (zu erwartende Einschaltzeit über die Lebensdauer) auf der Verpackung angegeben. Glühlampen haben eine Lebensdauer von ca. 1.000 Stunden, Halogenleuchtmittel von ca. 2.000 Stunden, Energiesparleuchtmittel (ESL) von ca. 3.000 bis 12.000 Stunden. Werden ESL-Leuchtmittel jedoch häufiger als 3-mal pro Tag ein- und ausgeschaltet, wie es bei Fluren oder Treppenhäusern mit Bewegungsmeldern und Zeitschaltuhren der Fall ist, wird die auf der Leuchtmittelverpackung angegebene Lebensdauer in Einschaltstunden häufig nicht annähernd erreicht, weil normale Energiesparleuchtmittel ohne Angabe der Schaltzyklen auf der Verpackung nur für ca. 3000 Schaltzyklen gebaut sind.

Das die Lebensdauer limitierende Kriterium ist bei häufigen Ein- und Ausschaltungen die Schaltfestigkeit, welche bei Qualitätsleuchtmitteln in Schaltzyklen auf der Verpackung angegeben wird. Bei sehr guten Energiesparleuchtmitteln wird die Schaltfestigkeit vom Hersteller mit 10.000 bis 20.000 Schaltzyklen angegeben. Lediglich bei einer einzigen, etwas teureren Energiesparleuchtmittel-Serie (Megaman Ingenium) gibt der Hersteller Megaman eine Schaltfestigkeit von 600.000 Schaltzyklen an. Diese ESL erreichen bzw. überbieten damit als einziges ESL-Produkt die Schaltfestigkeit von LED-Leuchtmitteln. Diese hochschaltfesten ESL benötigen jedoch im Unterschied zu den spontan hell werdenden LED-Leuchtmitteln ab dem Einschalten ca. 15 Sekunden bis zum Erreichen von 60 % des dauerhaft abgegebenen Lichtstroms. Dabei ist ein Schaltzyklus ein manuelles Ein- und Ausschalten des Netzstromes. Unabhängig davon kann die LED zudem noch gepulst sein, wobei die Pulse von der Elektronik selbst erzeugt werden. Diese Pulse zählen nicht zu den die Lebensdauer begrenzenden Schaltzyklen, welche bei guten LED-Leuchtmitteln seit 2012 meist mit der Produktspezifikation angegeben werden, sondern zur normalen Betriebsdauer, welche in Stunden angegeben wird.

Eine LED ist deutlich unempfindlicher gegenüber Schaltvorgängen als Glühlampen oder Energiesparleuchtmittel. Eine Dimmung wird beispielsweise in der Regel durch sehr schnelle Schaltvorgänge erzeugt. Der begrenzende Faktor der Schaltzyklen von LED-Leuchtmitteln ist nicht der LED-Chip selbst, sondern die Vorschaltelektronik, wozu das eingebaute Netzteil oder die Steuerelektronik gehören. All diese Bauteile sind weitaus empfindlicher gegenüber Schaltungen und z.B. den damit verbundenen thermischen Wechselbelastungen als die LED selbst, die viele Millionen Schaltprozesse problemlos übersteht. LED-Leuchtmittel sind aber auch inklusive Vorschaltelektronik meist deutlich schaltfester als normale Energiesparlampen. Die Herstellerangaben für Qualitäts-LED-Leuchtmittel liegen meist im Bereich von 50.000 bis 1 Million Schaltzyklen. Bei billigeren LED-Leuchtmitteln wird die Schaltfestigkeit häufig (Stand 2013) noch nicht auf der Verpackung angegeben. In diesen Fällen muss man von einer Schaltfestigkeit in der Größenordnung von 20.000 Schaltzyklen ausgehen.

Dass LED-Leuchtmittel eine deutlich höhere Schaltfestigkeit als Energiesparleuchtmittel haben, ist auch - neben der höheren Lebensdauer in Einschaltstunden und der höheren Lichteffizienz bzw. Lichtausbeute in Lumen pro Watt - mit ausschlaggebend dafür, dass seit 2011 bei langer Einschaltzeit und vielen Ein- und Ausschaltungen LED-Leuchtmittel in den meisten Fällen, trotz höherer Anschaffungskosten, insgesamt wirtschaftlicher als ESL oder Glühlampen sind.

Anwendungen und Einsatzbereiche

Anzeigen, Effektbeleuchtung und Taschenlampen

Digitaluhr von 1978 mit LED-Anzeige. Links Uhrzeit, rechts Tag und Datum

Der Anwendungsbereich der LEDs umfasste zunächst aufgrund geringer Lichtausbeute und fehlender Verfügbarkeit aller Farben hauptsächlich Anzeigeelemente wie beispielsweise Statusanzeigen. Sie ersetzten dabei kleinere Glühlampen oder Glimmlampen. Dieser Anwendungsbereich umfasst auch Anzeigen wie beispielsweise Siebensegmentanzeigen oder Matrixanzeigen, in welchem sie spezielle Elektronenröhren, wie die Nixie-Röhre, ablöste. Ein weiterer davon abzugrenzender Anwendungsbereich liegt im Bereich der Beleuchtung und dem Einsatz als Leuchtmittel. Neben der Raumbeleuchtung oder Straßenbeleuchtung kommen LEDs auch zunehmend in Taschenlampen und bei der Effektbeleuchtung vor, z. B. in beleuchteten Möbel- und Designerstücken wie Vitrinen oder Rahmen, bei denen schmale und teilweise versteckte LED-Streifen für eine angenehme indirekte Beleuchtung und Raumatmosphäre sorgen.

Signaltechnik und Verkehr

LED-Verkehrsampeln

KFZ-Rückleuchte mit LED-Technik

Gleichzeitig mit der Anwendung für Anzeigen ergaben sich Anwendungen zur Signalübertragung, wo die Leuchtdiode in ihrer Funktion nicht unbedingt für den Benutzer optisch sichtbar ist und wo Leuchtdioden bis heute dominierend sind. Beispiele sind infrarote LEDs in Infrarotfernsteuerungen, in Lichtschranken oder in Optokopplern zur galvanischen Trennung elektrischer Stromkreise. Auch Signalisierungen wie bei Verkehrsampeln lassen sich mit LEDs verwirklichen. Nutzungen mit höheren Lichtströmen, wie als Rücklicht (z. B. im BMW M3 E46) und auch Scheinwerfer oder als Kennleuchten auf Fahrzeugen, fallen auch in diesen Bereich. Dabei werden die zuvor eingesetzten Glühlampen oder Gasentladungslampen durch Leuchtdioden ersetzt. Dieser Anwendungsbereich wurde erst durch die Verfügbarkeit von Hochleistungs-LEDs mit entsprechender Lichtausbeute und der Verfügbarkeit in allen Farben möglich.

Die Verwendung von LEDs als Rück- und Bremslicht mit denselben LEDs, wie bei Glühbirnen durch die Trägheit des Glühfadens störungsfrei und häufig praktiziert, kann wegen der dafür langsamen Pulsweitenmodulation - um die geforderten unterschiedlichen Helligkeiten zu erzeugen - zu Problemen führen, weil LEDs keine kontinuierliche Lichtabgabe haben und nur während der Einschaltphase Licht abgeben. Das führt oft dazu, dass bei schnellen Augenbewegungen (Mikrosakkaden) die Rücklichter nebeneinander auf der Netzhaut abgebildet werden und darum nicht immer als ein Objekt wahrgenommen werden können (Perlschnureffekt). Die Wahrnehmung dieses Effekts und die damit verbundene Ablenkung vom Verkehrsgeschehen ist von Mensch zu Mensch unterschiedlich.[5] Dieser Effekt ist verstärkt, wenn die Rücklichter hohe und ungleichmäßige Leuchtdichten haben.

Im Jahr 2011 wurde erstmals in Europa ein Flughafenvorfeld mit LEDs beleuchtet: In Innsbruck leuchtet ein System mit 14 hohen Masten eine Fläche von 49.000 m² aus.[6]

Flüssigkristallbildschirme

Ein immer wichtiger werdender Anwendungsbereich von LEDs ist die Hintergrundbeleuchtung von Flüssigkristallbildschirmen, da LEDs eine langzeitstabilere Beleuchtung und zum Teil einen niedrigeren Strombedarf als Kaltkathodenlampen aufweisen. Außerdem lassen sich so sehr geringe Bautiefen realisieren. Entsprechende LCD-Fernseher werden umgangssprachlich häufig als LED-Fernseher bezeichnet.

Medizintechnik und Laser

Daneben existieren noch spezielle Einsatzbereiche, welche die spektralen Eigenschaften der eingesetzten Leuchtdioden ausnutzen. Beispiele sind die Medizintechnik, wo unter anderem ultraviolette LEDs zum Polymerisieren von Kunststoffen in der Zahntechnik, rote und infrarote LEDs zur Messung der Sauerstoffsättigung in Pulsoximetern verwendet werden, oder in der Licht-Hauttherapie – auch als LED-Photorejuvenation bekannt. Des Weiteren kommen LEDs durch den im Vergleich zu Blitzlampen höheren Wirkungsgrad und ein schmaleres Spektrum häufig als Pumpquelle von Lasern zum Einsatz.

LED-Leuchtmittel

Ab 2007 kamen von vielen Herstellern LED-Lampen für die üblichen E27- und E14-Glühlampensockel auf den Markt, sogenannte LED-Retrofit (auch Retrofit-LED genannt). Allerdings erreichten viele maximal 300 lm Helligkeit, was etwa einer 30 Watt starken konventionellen Glühlampe entspricht. Neben der für viele Zwecke ungenügenden Helligkeit wurde auch oft die bläuliche („kalte“) Lichtfarbe kritisiert. Während anfangs die Lichtfarbe noch ein Problem darstellte, erzeugen inzwischen einige LED-Lampen auch für den Wohnbereich angenehmes Licht, welches in der Farbwiedergabe der Energiesparlampe deutlich überlegen ist.[7] Seoul Semiconductor gab Ende Februar 2008 die Entwicklung und Markteinführung ultraheller LEDs bekannt, die 900 Lumen bei 10 Watt leisten.[Firma 8] Das gleicht etwa der Helligkeit einer Glühlampe mit 75 W oder der einer Energiesparlampe mit 17 W. Um die emittierte Farbe einer LED zu beeinflussen, werden die Halbleiterkristalle in lumineszensierende Stoffe eingebettet oder eingekapselt. Das primäre Licht aus dem p-n-Übergang wird in diesen Stoffen durch Fluoreszenz oder Phosphoreszenz in andersfarbiges Licht umgewandelt. Zudem wird die additive Farbmischung zwischen dem Lumineszenzlicht und dem primären Licht genutzt.

 

Entsorgung und Recycling

Hauptartikel: Altlampen-Recycling

Defekte oder ausgediente LED-Leuchtmittel müssen in Deutschland aufgrund des ElektroG im Elektronikschrott entsorgt werden. Bei LEDs mit Galliumarsenid als Halbleiter ist dieser giftig und umweltgefährlich, außerdem enthält das eingebaute Vorschaltgerät des Leuchtmittels weitere elektronische Bauteile. Die Schadstoffmenge in den Leuchtmitteln ist aber – wie bei den Kompaktleuchtstofflampen auch – im Vergleich zur Schadstoffbelastung durch die Produktion gering. Das prinzipiell mögliche Recycling von Galliumarsenid aus LEDs (Urban Mining) ist 2012 noch nicht rentabel. Galliumarsenid wird auch nur für LEDs mit Wellenlängen über 570 nm eingesetzt. Weiße LEDs enthalten kein giftiges Galliumarsenid.

 

Schlusswort

 Wir werden auch in Zukunft allen Neuerungen der Technik offen gegenüber stehen und uns bemühen, unseren Kunden den neuesten Stand der Technik anbieten zu können. Es ist uns ein Anliegen den Stromsparbemühungen unserer Kunden Beachtung zu schenken und der Umwelt einen grossen Schritt entgegen zu kommen.






Wir danken für Ihr Interesse an LED's und wünschen 

Ihnen viel Freude mit der Zukunft des Licht's